FBISE

Federal Board HSSC - I Examination
Chemistry - Mark Scheme

SECTION A

Q. 1

i.	D	ii.	C	iii.	A
iv.	C	v.	A	vi.	D
vii.	C	viii.	C	ix.	D
x.	C	xi.	C	xii.	B
xiii.	D	xiv.	A	xv.	D
xvi.	D	xvii.	D		

$(17 \times 1=17)$

SECTION B

Q. 2
$2 \mathrm{NH}_{3}+5 \mathrm{~F}_{2} \longrightarrow \mathrm{~N}_{2} \mathrm{~F}_{4}+6 \mathrm{HF}$
i. moles of $\mathrm{NH}_{3}=\frac{4}{17}=0.235 \quad(1 / 2$ mark $)$
moles of $\mathrm{F}_{2}=\frac{14}{38}=0.368 \quad$ ($1 / 2$ mark)
mass of $\mathrm{N}_{2} \mathrm{~F}_{4}=7.654 \mathrm{~g} \quad$ (1 mark)
ii. Ammonia
($1 / 2$ mark)
(1 mark) ($1 / 2$ mark) (1 mark)
moles of ammonia used $=0.147$
mole in excess $=0.235-0.147=0.088 \mathrm{~mol}$
$\mathrm{V}=\mathrm{n}_{\mathrm{m}}$
$=0.088 \times 22.414$
$=1.97 \mathrm{dm}^{3}$
(OR)
i. $\mathrm{C}: \mathrm{H}$

$\frac{85.7}{12}:$	$\frac{14.3}{1.008}$	(1 mark)	
$7.142:$	14.187	$(1$ mark $)$	
1	$:$	2	
CH_{2}			

ii.
b. $\mathrm{n}=\frac{\text { molecular formula mass }}{\text { empirical formula mass }}$
$=\frac{56}{14}=4$
(1/2 mark)
Molecular formula $=\mathrm{n}($ empirical formula)

$$
\begin{aligned}
& =4\left(\mathrm{CH}_{2}\right) \\
& =\mathrm{C}_{4} \mathrm{H}_{8}
\end{aligned}
$$

Q. 3
(3)
a. $\quad \mathrm{V}=\frac{C}{\lambda}$
$=\frac{3 \times 10^{8}}{589 \times 10^{-10}}=5.09 \times 10^{15} \mathrm{~S}^{-1}$
(1 mark)
b. $\quad \mathrm{E}=\mathrm{h} v$

$$
\text { Per photon }=6.626 \times 10^{-34} \times 5.09 \times 10^{15}
$$

$$
=3.37 \times 10^{-18} \mathrm{~J}
$$

(1 mark)
Per mole $=\frac{3.37 \times 10^{-18}}{1000} \times 6.022 \times 10^{23}$

$$
=2029 \mathrm{KJ} / \mathrm{mol}
$$

(1 mark)
Q. 4

i. A and C

ii. B
iii. Relative solubility of different solute present in the mixture
Solute having lower R_{f} value is less soluble than solute having higher R_{f} value in the same solvent
(1 mark)
Q. 5

$$
\begin{aligned}
& \mathrm{V}=\mathrm{n} \mathrm{~V}_{\mathrm{m}} \\
& \mathrm{n}=\frac{V}{V_{m}}=\frac{100}{22414}=4.16 \times 10^{-3} \mathrm{~mol} \quad \text { (1 mark) } \\
& \text { relative molecular mass }=\frac{\text { mass }}{\text { mole }} \\
& =\frac{0.25}{4.46 \times 10^{-3}}=56 \quad(1 \mathrm{mark})
\end{aligned}
$$

i. $\mathrm{I}_{2}+\mathrm{I}^{-1}{ }_{\text {(aq) }} \quad \mathrm{I}^{-3}{ }_{(\text {aq })} \quad$ (1 mark)
ii. Distribution law or partition law
(1 mark)
iii. $\quad \mathrm{K}=\frac{\left\lfloor I_{2\left(C C_{4}\right)}\right\rfloor}{\left[I_{2} \text { as } I_{3(a q)}^{-1}\right\rfloor}$
(1 mark)

(OR)

a. When $\mathrm{n}=3$ the possible value of l will $\mathrm{n}-1$ which is $l=2$ so $l=3$ is not allowed.
(1 mark)
b. When $\mathrm{m}=-1$

$$
s=-1 / 2,+1 / 2 \text { not }-1
$$

clock wise or anti clock wise direction (1 mark)
c. When $l=1$ then $\mathrm{m}=-l, 0,+l$ not $\mathrm{m}=-2 \quad$ (1 mark)
the value of m varies from $-l$ to $+l$
Q. 6
a. Low temperature
(5)
(1/2 mark)
High pressure
(1/2 mark)
b. Molecules come close to each other attractive forces between them increase.
(1 mark)
Gaseous particles are converted into liquid state. (1 mark)
c. Lesser than NH_{3}
(1 mark)
N_{2} molecules have weak Vander Waal forces while stronger forces (hydrogen bonding) exist in NH_{3} molecules.
(1 mark)
Q. 7
i. Both have weak intermolecular forces therefore less
amount of energy is required to break these forces.
(1 mark)
ii. Propanol molecules have stronger intermolecular forces than the others.
(1 mark)
Hydrogen bonding
(1 mark)
Q. 8
i. $\quad \mu=\mathrm{q} \times \mathrm{r}$
(1 mark)
Unit = Debye or Coulomb meter.
(1 mark)
ii. $\quad \mathrm{H}_{2} \mathrm{O}$ is polar while CO_{2} is non-polar
(1 mark)
$\stackrel{+}{=} \mathrm{C} \underset{=}{\leftrightarrows}$
In CO_{2} dipole moment of $\mathrm{C}=\mathrm{O}$ cancel the effect of each other.
(1 mark)

(OR)

i. Variation in period
(1 mark)

Reason	$(1 / 2 \mathrm{mark})$
	Variation in group
Reason	$(1 \mathrm{mark})$
ii.	$\mathrm{K}^{+} \mathrm{Cl}^{-}=131+181=312 \mathrm{Pm}$

Q. 9
a. When an electrode is in contact with one molar solution of its own ions at 298 k , is standard electrode potential.
b. i. Copper electrode
ii. Copper to silver
c. $\mathrm{Cu} \longrightarrow \mathrm{Cu}^{2+}+2 \bar{e}$
$\mathrm{Ag}^{+}+\bar{e} \longrightarrow \mathrm{Ag}$
(2 marks)
Q. 10
i. +ive electrode
ii. -ive electrode
(1 mark)
iii. +ive electrode
+ive electrode
i. from anode to cathode
ii. 4
Q. 11

Concentration $=5 \mathrm{~g} / \mathrm{dm}^{3}$
Conc $_{\text {mol/dm3 }}=\frac{\text { Conc.g dm }}{}{ }^{-3}$

$$
=\frac{5}{104}=0.0305 \mathrm{~mol} / \mathrm{dm}^{3}
$$

(1 mark)
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{NO}_{3}^{-1}$
Conc. of $\mathrm{Ca}^{2+}=0.0305 \mathrm{M}$
Conc. of $\mathrm{NO}_{3}^{-1}=2 \times 0.0305=0.061 \mathrm{M}$
(2 marks)
Q. 12
a. That resists change in pH when acid or alkali added to it. (1 mark)
b. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$
When a base or OH^{-}ions are added to above buffer system,
OH^{-}react with $\mathrm{H}_{3} \mathrm{O}^{+}$to give back $\mathrm{H}_{2} \mathrm{O}$ and pH of solution remain unchanged.
Common ion effect is applied in buffer solution.
(3 mark)

SECTION C

Q. 13
a. i.
$\mathrm{C}_{2} \mathrm{H}_{2}+5 / 2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=$?
(a) $\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}=-393.5 \mathrm{KJ} / \mathrm{mol}$
(b) $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-285.7 \mathrm{KJ} / \mathrm{mol}$
(c) $2 \mathrm{C}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2} \quad \Delta \mathrm{H}=226 \mathrm{KJ} / \mathrm{mol}$

Multiply equation (a) by (2) then add the product to equation (b) we get:
(d) $2 \mathrm{C}+\frac{5}{2} \mathrm{O}_{2}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-1072.7 \mathrm{KJ}$

Subtract equation (c) from equation (d)
$2 \mathrm{C}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2} \quad \Delta \mathrm{H}=-226$
$\mathrm{C}_{2} \mathrm{H}_{2}+5 / 2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{C}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-1298.7 \mathrm{KJ} / \mathrm{mol}$
(3 marks)
ii. Hess's Law: overall energy change is the same, regardless of the route applied.
(2 marks)
b. i. Lattice energy is the enthalpy of formation of one mole of the ionic compound from gaseous ions under standard conditions.
ii. Born-haber cycle
iii.

a. i. The relative lowering of vapour pressure is equal to mole fraction of solute.
(1 mark)

```
ii. \(\quad P_{A}=P_{A}^{\circ} X_{A}\)
(1 mark)
            \(P_{B}=P_{B}^{\circ} X_{B}\)
    \(P_{t}=P_{A}+P_{B}=P_{A}^{\circ} X_{A}+P_{B}^{\circ} X_{B}\)
        \(X_{A}+X_{B}=1\)
        \(X_{A}=1-X_{B}\)
        (1 mark)
    \(P_{t}=P_{A}^{\circ}\left(1-X_{B}\right)+P_{B}^{\circ} X_{B}\)
    \(P_{t}=\left(P_{B}^{\circ}-P_{A}^{\circ}\right) X_{B}+P_{A}^{\circ}\)
(1 mark)
```

b. i. 210 g of solution contain 110 g of KNO_{3}
ii. $\quad 1 \mathrm{~g}=\frac{110}{210}$ gof KNO_{3}
(1 mark)

$$
\begin{aligned}
525 \mathrm{~g} & =\frac{110}{210} \times 525 \mathrm{~g} \text { of } \mathrm{KNO}_{3} \\
& =275 \mathrm{~g} \text { of } \mathrm{KNO}_{3}
\end{aligned}
$$

(1 mark)
This is saturated solution.
(1 mark)
c. Positive deviation
negative deviation
(2 marks)
In case of positive deviation total pressure increases. (1 mark)
In case of negative deviation total pressure decreases. (1 mark)
Diagram for both deviation.
(1 mark)
Q. 15
(13)
a. i.

Bond angle $=107^{\circ}$

Bond angle $=120^{\circ}$
ii. In $\mathrm{NH}_{3}=\mathrm{SP}^{3}$ hybridization

In $\mathrm{BF}_{3}=\mathrm{SP}^{2}$ hybridization
(1 mark)
($1 / 2$ mark)
(1/2 mark)
(1 mark)
($1 / 2$ mark)
(1/2 mark)

Due to un-paired electron in π orbital O_{2} show paramagnetic behaviour.
While O_{2}^{2-} is diamagnetic because it has no un-paired
electron in π orbital.
(2 marks)
ii. Bond order $=1 / 2[10-6]$

$$
\begin{aligned}
& =1 / 2[4] \\
& =2
\end{aligned}
$$

(1 mark)

