

Answer Sheet No	
Sig. of Invigilator	

CHEMISTRY HSSC-I

SECTION - A (Marks 17)

NOTE:-		on the a	uestion paper	ery and comprise itself. It should lent. Deleting/ov	be comp	leted in	n the firs	st 25 m	inutes and	nanded over to
Q. 1	Cir	cle the co	rrect option i.	e. A / B / C / D. Ea	ach part	arries	one mar	rk.		
	(i)	The	number of atom	s of phosphorous	in one m	ole of A	duminium	Phosp	ohate ALPO ₄	is:
		Α.	3×10 ²³			B.	12×10	2.5		
		C.	6×10 ²³			D.	18×10	23		
	(ii)	NH_1	has three bond	pairs and one lo	ne pair of	election	n. Its stru	cture w	/ill be	-
	385	A.	Trigonal Pyr Tetrahedral			B. D.		al Plan		
	(iii)	Posit A. B. C. D.	ive rays are pro Burning of g Cooling of g Ionization of From anode	as as	es from ca	thode				
	(iv)	In wh		ving set all memb	ers are is	pelectro	onic?			
		A.	$F^{1-}, Cl^{1-},$				O^+ , O^+		235	
			Ca^{2+} , Mg^{2-}							
	(v)	The i A. B. C. D.	Dissolves a Does not re	r the crystallization moderately large act with the comp nly a small amour	amount o	f the co	ompound	when I	e that	
	(vi)		solubility production $I_2 = 1 \times 10^{-15}$	ct values for the for $NaCl = 1 \times 10^{2}$	ollowing s	alts are	given be	elow:		
		KCI	$=1 \times 10^{23}$	$ZnCl_2 = 1 \times 10^2$	0					
		On p A. B.	$NaCl$ will p $ZnCl_2$ will p	as it is observed the recipitate first precipitate first precipitate first	nat:					
		D.		ecipitate first						
	(vii	Radi A B. C. D.	Zero order Second ord First order None of the	er kinetics kinetics	pically de	cay by		8		

DO NOT WRITE ANYTHING HERE

(viii)	A. B.	h of the following is NOT a characteristic Zero enthalpy of solution No change in intermolecular forces or	n formati	
	C. D.	Zero volume change on solution form. None of these	ation	
(ix)		the reaction:		
4.5.7		$+Cu_{(nq)}^{2+} \longrightarrow Pb_{(nq)}^{2+} + Cu_{(r)}$ What is the r	educina	agent?
	Α.	Pb_{tout}^{2-}	В	$Cu_{(uq)}^{2+}$
	C.	$Pb_{(s)}$	D.	$Cu_{(s)}$
(x)	Cryst	als of ice are		(3)
(*)	A.	Metallic	В.	Molecular
	C.	Covalent	D.	Ionic
(xi)	Disso	lving 1 mole of KCI in 1000 grams of H	0 affe	cts
	Α.	The boiling point of the H_2O only		
	B.	The freezing point of the H_2O only		
	C.	Both the boiling point and the freezing		
	D.	Neither the boiling point nor the freezing	ng point	of the H_2O
(xii)	What	type of process is represented by the eq	uation g	iven? $\frac{1}{2}Cl_{2(g)} \longrightarrow Cl_{(g)}$ $\Delta H = 121kj \mid mol$
	A. C.	Standard enthalpy of formation Electron affinity	B.	Ionisation enthalpy Enthalpy of atomisation
(xiii)	Consid	der the fictional reaction: $CD(g) + D(g) =$		
	Α.	$K_{ij} = K_{ij}$		$K_v = K_u(RT)^2$
		$K_{c} = K_{n}(RT)^{-2}$		$K_c = K_p(RT)$ $K_c = K_p(RT)$
(xiv)		18 1802 51		
(XIV)	acid A	is the pH of a buffer containing 2.0 M H Ac is 1.0×10^{-4} ?	Ac and	2.0 M NaAc If the Ka of the weak
	A.	10-4	B.	-0.3
	C.	-0.4	D.	
(xv)	Greate	er the value of standard reduction potential	al, great	er will be tendency of
	Α.	Oxidation	В.	Reduction
	C.	To accept electron	D.	Both B and C
(xvi)	Solutio	n of Na ₂ SO ₄ will be		
	Α,	Basic	B.	Acidic
	C.	Neutral	D.	More acidic
(xvii)	In Endo	Product is more than that of reactants		
	C.	Reactant is more than that of products Both A and B		
	D.	Reactants and products are equal		
For Ev	aminor'	s use only:		
	iiiiiii	o doc only.		
			Total I	Vlarks: 17
			Marks	Obtained:

CHEMISTRY HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

IOTE:- Sections 'B' and 'C' comprise pages 1–2 and questions therein are to be answered on the separately provided answer book. Answer any fourteen parts from Section 'B' and attempt any two questions from Section 'C'. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Q. 2 Attempt any FOURTEEN parts. The answer to each part should not exceed 5 to 6 lines.

	(1	14 x 3 = 42)
(i)	 Name the Mobile phase and the Stationary phase in paper chromatography. Explain within three lines the retardation factor in chromatography. 	01 02
(ii)	Define the following with the help of examples:	
0.00	a. Gram molecular mass	01
	b. Molar value	01
	c. Percentage yield	01
(iii) (iv)	What are Spontaneous and Non-spontaneous processes? Give examples. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$	o3 ire.
	Explain why a small increase in temperature can lead to a large increase in	
	the rate of reaction between hydrogen and chlorine.	02
	 Suggest one reason why a solid catalyst for a gas-phase reaction is often in 	
	the form of a powder.	01
(V)	When a 0.218 mol sample of hydrogen iodide was heated in a flask of volume Vdm ³ ,	
	the following equilibrium was established at 700K:	
	$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$	
	The equilibrium mixture was found to contain 0.023mol of hydrogen.	
	Calculate the value of K at 700 K?	03
(vi)	At 318K, the value of K_w is $4.02 \times 10^{-14} mol^2 dm^{-6}$ and hence the pH of pure	
1	water is 6.70. State why pure water is not acidic at 318K.	03
(vii)	a. What is meant by hydrogen bonding?	01
(***)	b. The bond angle in a molecule of water is about 104.5°. State the bond angle	
	in an ammonia molecule and explain why it is different from that in water.	02
(viii)	How does the molecular orbital theory explain the paramagnetic character of O_3 ?	03
(ix)	Define Standard reduction potential.	01
(,,,)	b. Write down the cell reaction and calculate the value of E.	02
	$H_{2Pt}, H^{*}(1M) Cu^{*+}(1M), Cu \qquad E_{Cu,Cu^{++}} = -0.34V$	
(x)	Calculate the mole fraction of water in a mixture of 36 g. H ₂ O, 60 gm. CH ₃ COOH	
	and $92gm C_2H_5OH$.	03
(xi)	Calculate the rate constant of the 1st order decomposition of HI in water at 40°C.	
	The half life for the decomposition of HI is 2.16×10^4 sec.	03
(xii)	Derive the mathematical relationship of de-Broglie.	01
	b. What is the wave length associated with an α – particle of mass	
	$6.64 \times 10^{-7} kg$ travelling at $3 \times 10^8 m/s$.	02
	The second of th	
	The second secon	

	(xiii)	Name the strongest type of intermolecular force present in the following liquids: a. Liq. Fluorine b. Fluoromethane c. Hydrogen fluoride	01 01 01
	(xiv)	A $0.150 mol dm^{-3}$ solution of a weak acid, HX , also has a pH of 2.34 . Calcualte the value of K_a .	02
	(xv)	Prove that $\Delta E = qv$ and $\Delta H = qp$.	03 03
	(xvi)	Nitric oxide, an important pollutant in air, is formed from the elements nitrogen and oxygen at high temperature. $N_1 + Q_2 \Longrightarrow 2NO$	03
		At $2000^{o}C$, K_{c} for the reaction is 0.01. Predict the direction in which the system will move to reach equilibrium at $2000^{o}C$ if 0.4 moles of N_{2} , 0.1 moles of O_{c} and	
	(xvii)	0.08 moles of NO are placed in a 1.0 – liter container. Balance the following equations by oxidation reduction method: a. $HNO_3 + Zn \longrightarrow Zn(NO_3)_2 + N_2O + H_2O$	03
	(xviii)	b. $HI + H_2SO_4 \longrightarrow H_2O + I_2 + SO_2$ An organic compound has the following composition by mass: $C = 49.31\%$, $H = 6.85\%$ and $O = 43.84\%$	
		Calculate its molecular formula. Molecular Mass = 146	03
	(xix)	For the distribution of lodine between two immiscible solvents $(H_1O and CCl_1)$	
		lodine reacts with iodide ion to form tri-iodide ion in a reversible reaction. a. Write the reaction for this process. b. Name and state the law followed.	01 02
		SECTION - C (Marks 26)	
Mater			
Note:-			
		ttempt any TWO questions. All questions carry equal marks.	2 x 13 = 26)
Q. 3	a.	(i) For the reversible reaction:	2 x 13 = 26)
Q. 3		862 ACTIVE CONT.	
Q. 3		(i) For the reversible reaction: $4HCl(g) + O_2(g) \Longrightarrow 2H_2O(g) + 2Cl_2(g)$ Write down the equilibrium constant expression and calculate unit of K_c	2 x 13 = 26) 03
Q. 3		 (i) For the reversible reaction: 4HCl(g)+O₂(g) ⇒ 2H₂O(g)+2Cl₂(g) Write down the equilibrium constant expression and calculate unit of K₂ for the above reaction. (ii) What is solubility product? Derive the solubility product expression for a 	03
Q. 3	a.	 (i) For the reversible reaction: 4HCl(g)+O₂(g) ⇒ 2H₂O(g)+2Cl₂(g) Write down the equilibrium constant expression and calculate unit of K₂ for the above reaction. (ii) What is solubility product? Derive the solubility product expression for a general, sparingly soluble substance A_mB_n (i) What is meant by Buffer solution? Give two examples. 	03
Q. 3	a.	 (i) For the reversible reaction: 4HCl(g)+O₂(g) ⇒ 2H₂O(g)+2Cl₂(g) Write down the equilibrium constant expression and calculate unit of K₂ for the above reaction. (ii) What is solubility product? Derive the solubility product expression for a general, sparingly soluble substance A_mB_n 	03
Q. 3 Q. 4	a.	 (i) For the reversible reaction: 4HCl(g)+O₂(g) ⇒ 2H₂O(g)+2Cl₂(g) Write down the equilibrium constant expression and calculate unit of K₂ for the above reaction. (ii) What is solubility product? Derive the solubility product expression for a general, sparingly soluble substance A_mB_n (i) What is meant by Buffer solution? Give two examples. (ii) Calculate the pH of buffer solution containing 2.5 mol dm⁻¹ HCOONa and 	03 03 03
	a. b.	 (i) For the reversible reaction: 4HCl(g)+O₂(g) ⇒ 2H₂O(g)+2Cl₂(g) Write down the equilibrium constant expression and calculate unit of K₂ for the above reaction. (ii) What is solubility product? Derive the solubility product expression for a general, sparingly soluble substance A_mB_n (i) What is meant by Buffer solution? Give two examples. (ii) Calculate the pH of buffer solution containing 2.5 mol dm⁻³ HCOONa and 1.0 mol dm⁻³ HCOOH (Ka = 1.6 × 10⁻⁴ mol dm⁻³). Predict the geometry of following molecules on the basis of VSEPR theory: 	03 03 03 04 06
	a. b.	 (i) For the reversible reaction: 4HCl(g) + O₂(g) ⇒ 2H₂O(g) + 2Cl₂(g) Write down the equilibrium constant expression and calculate unit of K₂ for the above reaction. (ii) What is solubility product? Derive the solubility product expression for a general, sparingly soluble substance A_mB_n (i) What is meant by Buffer solution? Give two examples. (ii) Calculate the pH of buffer solution containing 2.5 mol dm⁻³ HCOONa and 1.0 mol dm⁻³ HCOOH (Ka = 1.6 × 10⁻⁴ mol dm⁻³). Predict the geometry of following molecules on the basis of VSEPR theory: (i) BF₃ (ii) NF₃ (iii) SO₂ 	03 03 03 04 06
Q. 4	a. b.	 (i) For the reversible reaction: 4HCl(g) + O₂(g) === 2H₂O(g) + 2Cl₂(g) Write down the equilibrium constant expression and calculate unit of K_c for the above reaction. (ii) What is solubility product? Derive the solubility product expression for a general, sparingly soluble substance A_mB_n (i) What is meant by Buffer solution? Give two examples. (ii) Calculate the pH of buffer solution containing 2.5 mol dm⁻³ HCOONa and 1.0 mol dm⁻³ HCOOH (Ka = 1.6 × 10⁻⁴ mol dm⁻³). Predict the geometry of following molecules on the basis of VSEPR theory: (i) BF₃ (ii) NF₃ (iii) SO₂ Explain the geometry of H₂O, BeCl₂ and C₂H₄ on the basis of hybridization schemes (i) What are two faulty assumptions in the kinetic theory of gases? 	03 03 03 04 06
Q. 4	a. b. a. b.	 (i) For the reversible reaction: 4HCl(g)+O₂(g) \(\infty 2H₂O(g)+2Cl₂(g) \) Write down the equilibrium constant expression and calculate unit of K_c for the above reaction. (ii) What is solubility product? Derive the solubility product expression for a general, sparingly soluble substance A_mB_n (i) What is meant by Buffer solution? Give two examples. (ii) Calculate the pH of buffer solution containing 2.5 mol dm⁻³ HCOONa and 1.0 mol dm⁻³ HCOOH (Ka = 1.6 × 10⁻⁴ mol dm⁻³). Predict the geometry of following molecules on the basis of VSEPR theory: (i) BF₃ (ii) NF₃ (iii) SO₂ Explain the geometry of H₂O, BeCl₂ and C₂H₄ on the basis of hybridization schemes (i) What are two faulty assumptions in the kinetic theory of gases? (ii) Derive Van der Waal equation for real gases. 	03 03 03 04 06 3. 07
Q. 4	a. b.	 (i) For the reversible reaction: 4HCl(g) + O₂(g) === 2H₂O(g) + 2Cl₂(g) Write down the equilibrium constant expression and calculate unit of K_c for the above reaction. (ii) What is solubility product? Derive the solubility product expression for a general, sparingly soluble substance A_mB_n (i) What is meant by Buffer solution? Give two examples. (ii) Calculate the pH of buffer solution containing 2.5 mol dm⁻³ HCOONa and 1.0 mol dm⁻³ HCOOH (Ka = 1.6 × 10⁻⁴ mol dm⁻³). Predict the geometry of following molecules on the basis of VSEPR theory: (i) BF₃ (ii) NF₃ (iii) SO₂ Explain the geometry of H₂O, BeCl₂ and C₂H₄ on the basis of hybridization schemes (i) What are two faulty assumptions in the kinetic theory of gases? 	03 03 03 04 06 3. 07